Affiliation:
1. Department of Mechanical Engineering, Koszalin University of Technology, ul. Raclawicka 15-17, 75-620 Koszalin, Poland
Abstract
Phase-change materials (PCMs) are attractive materials for storing thermal energy thanks to the energy supplied/returned during the change in matter state. The encapsulation of PCMs prevent them from connecting into large clusters, prevents the chemical interaction of the PCM with the walls of the tank and the exchanger material, and allows the phase change to be initiated in parallel in each capsule. The microencapsulation of PCMs (mPCMs) and the nanoencapsulation of PCMs (nPCMs) entail that these particles added to the base liquid can act as a slurry used in heat exchange systems. PCM micro-/nanocapsules or mPCM (nPCM) slurry are subjected to numerous physical, mechanical, and rheological tests. However, flow tests of mPCM (nPCM) slurries are significantly limited. This paper describes the results of detailed adiabatic flow tests of mPCM slurry in a tube with an internal diameter of d = 4 mm and a length of L = 400 mm. The tests were conducted during laminar, transient, and turbulent flows (Re < 11,250) of mPCM aqueous slurries with concentrations of 4.30%, 6.45%, 8.60%, 10.75%, 12.90%, 15.05%, and 17.20%. The mPCM slurry had a temperature of T = 7 °C (the microcapsule PCM was a solid), T = 24 °C (the microcapsule PCM was undergoing a phase change), and T = 44 °C (the microcapsule PCM was a liquid). This work aims to fill the research gap on the effect of the mPCM slurry concentration on the critical Reynolds number. It was found that the concentration of the mPCM has a significant effect on the critical Reynolds number, and the higher the concentration of mPCM in the base liquid, the more difficult it was to keep the laminar flow. Additionally, it was observed that, as yet unknown in the literature, the temperature of the slurry (and perhaps the physical state of the PCM in the microcapsule) may affect the critical Reynolds number.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献