New Modular Multilevel DC–DC Converter Derived from Modified Buck–Boost DC–DC Converter

Author:

Aditama Ridha D. N.1,Ramadhani Naqita1,Ardriani Tri1,Furqani Jihad1,Rizqiawan Arwindra1ORCID,Dahono Pekik Argo1

Affiliation:

1. School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia

Abstract

Raising the electrification ratio to 100% is still a formidable challenge in Indonesia, especially in the remote areas of the eastern part of the archipelago. A DC microgrid system is one of the most viable solutions to increase the electricity supply in remote areas, taking advantage of various renewable energy sources that are located near the rural load centers. A DC–DC power converter for a rural DC microgrid system needs to have a high voltage gain to facilitate the power conversion from low-voltage PV output to a high-voltage DC microgrid bus, a very low input ripple current to help maintain the PV or battery lifetime, and be highly modular for ease of transport and assembly. Many topologies have been proposed to obtain high voltage gain, very low ripple current, and modularity. However, they usually use either bulky and lossy magnetic components, are sensitive to component parameter variance and need special voltage-balancing techniques, or have different component ratings for their multilevel configuration which weakens the modularity aspect. This paper proposes a new modular multilevel DC–DC converter that is very suitable for rural DC microgrid applications based on a modified buck–boost topology. The proposed converter is easily stackable to achieve high voltage gain and does not require any voltage balancing techniques, thus enhancing the modularity characteristics and simplifying its control method. Moreover, the ripple current can be reduced by employing a multiphase configuration. This converter can also facilitate bidirectional power flow to serve as a battery charger/discharger. A comprehensive analysis of voltage gain and ripple current are presented to explain the inner workings of this converter. Finally, the performance of this converter is verified through simulation and experiment, showing the converter’s modularity, bidirectional power capability, and potential to achieve voltage gain and ripple-current requirements of the DC microgrid system.

Funder

Korea Midland Power Company,

School of Electrical Engineering and Informatics

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3