Affiliation:
1. Petroleum, Oil and Lubricants Department, Army Logistics Academy, Chongqing 401331, China
2. Chongqing Key Laboratory of Fire and Explosion Safety Protection, Chongqing 401331, China
Abstract
Gasoline–air mixture explosions mostly occur in buried tank rooms, which are annular cylindrical confined spaces with circular arches. In this paper, explosion experiments at different gasoline–air mixture volume fractions are carried out in an annular cylindrical steel bench with a circular arch curvature radius of 900 mm and an annular half-perimeter to radial width ratio of 12π. The results show that the development process of explosion overpressure is clearly divided into four stages after first-order differentiation treatment. Compared with other types of confined spaces, 1.70% is still the most dangerous gasoline–air mixture volume fraction. However, this type of confined space has a larger inner surface area in the same volume condition, which will inevitably increase the heat absorption rate, reduce the chemical reaction rate, and slow down the flame propagation speed. Meanwhile, this spatial structure will inevitably make the explosion flames collide, which will promote positive feedback coupling between explosion flames and pressure waves, making the explosion more violent and dangerous. These results can provide theoretical and technical support for the explosion prevention design of buried tank rooms.
Funder
Key Basic Research Program
Postgraduate Funded Program
Postgraduate Research Innovation Program of Chongqing
Youth Independent Innovation Science Foundation Program of ALA
Science and Technology Research Program of Chongqing Municipal Education Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献