Uncertainty Evaluation Based on Bayesian Transformations: Taking Facies Proportion as An Example

Author:

Qiao Yangming1,Li Shaohua1ORCID,Li Wanbing1

Affiliation:

1. College of Geosciences, Yangtze University, Wuhan 430100, China

Abstract

Many input parameters in reservoir modeling cannot be uniquely determined due to the incompleteness of data and the heterogeneity of the reservoir. Sedimentary facies modeling is a crucial part of reservoir modeling. The facies proportion is an important parameter affecting the modeling results, because that proportion directly determines the net gross ratio, reserves and sandbody connectivity. An uncertainty evaluation method based on Bayesian transformation is proposed to reduce the uncertainty of the facies proportion. According to the existing data and geological knowledge, the most probable value of the facies ratio and the prior distribution of uncertainty are estimated. The prior distribution of the facies proportion is divided into several intervals, and the proportions contained in each interval are used in facies modeling. Then, spatial resampling is carried out for each realization to obtain the likelihood estimation of the facies proportion. Finally, the posterior distribution of the facies ratio is achieved based on Bayesian transformation. The case study shows that the uncertainty interval of sandstone proportion in the study area has been reduced from [0.31, 0.59] to [0.35, 0.55], with a range reduction of 29%, indicating that the updated posterior distribution reduces the uncertainty of reservoir lithofacies proportion, thereby reducing the uncertainty of modeling results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference29 articles.

1. Reservoir uncertainty evaluation;Li;J. Xi’an Univ. Pet. Nat. Sci. Ed.,2004

2. Two parameter optimization methods of multi-point geostatistics;Wang;J. Pet. Sci. Eng.,2022

3. Progress of reservoir uncertainty modeling;Dai;Lithol. Reserv.,2015

4. A discussion on the method to study uncertainty of geologic modeling parameters;Sun;China Offshore Oil Gas,2009

5. Error and uncertainty in modeling and simulation;Oberkampf;Reliab. Eng. Syst. Saf.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3