A Dual-Step Integrated Machine Learning Model for 24h-Ahead Wind Energy Generation Prediction Based on Actual Measurement Data and Environmental Factors

Author:

Ma Yuan-JiaORCID,Zhai Ming-Yue

Abstract

Wind power generation output is highly uncertain, since it entirely depends on intermittent environmental factors. This has brought a serious problem to the power industry regarding the management of power grids containing a significant penetration of wind power. Therefore, a highly accurate wind power forecast is very useful for operating these power grids effectively and sustainably. In this study, a new dual-step integrated machine learning (ML) model based on the hybridization of wavelet transform (WT), ant colony optimization algorithm (ACO), and feedforward artificial neural network (FFANN) is devised for a 24 h-ahead wind energy generation forecast. The devised model consists of dual steps. The first step uses environmental factors (weather variables) to estimate wind speed at the installation point of the wind generation system. The second step fits the wind farm actual generation with the actual wind speed observation at the location of the farm. The predicted future speed in the first step is later given to the second step to estimate the future generation of the farm. The devised method achieves significantly acceptable and promising forecast accuracy. The forecast accuracy of the devised method is evaluated through several criteria and compared with other ML based models and persistence based reference models. The daily mean absolute percentage error (MAPE), the normalized mean absolute error (NMAE), and the forecast skill (FS) values achieved by the devised method are 4.67%, 0.82%, and 56.22%, respectively. The devised model outperforms all the evaluated models with respect to various performance criteria.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Probabilistic short-term wind power forecasting for the optimal management of wind generation;Jeremie;IEEE Lausanne Power Tech.,2007

2. A review on the young history of the wind power short-term prediction;Alexandre;Renew. Sustain. Energy Rev.,2008

3. A review on the forecasting of wind speed and generated power;Ma;Renew. Sustain. Energy Rev.,2009

4. Short-term prediction of the power production from wind farms

5. A Fuzzy Model for Wind Speed Prediction and Power Generation in Wind Parks Using Spatial Correlation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3