Extensive Modeling of Peculiar Hydration in Fine Micro-Pore Structures Applicable to Integrated Thermodynamic Analysis for Portland Cement

Author:

Kinomura Koji,Ishida TetsuyaORCID

Abstract

Although applications of low water-to-cement ratio mixtures to practical structures have been increasing to enhance seismic resistance and long-term durability in recent years, it was experimentally observed that such a mixture causes peculiar hydration under long-term normal or high temperature curing. On the other hand, excessive hydration was revealed in the analysis using the original model, compared with the experiment in such an environment, because un-hydrated cement particles and existing condensed water reacted more significantly in the model. This study aims to enhance the integrated multiscale thermodynamic analysis, which is able to predict structural behavior in various conditions in a unified approach, by incorporating recent technical evolutions for its reverification and extending the original model to resolve the above peculiar concerns. Hence, the extensive modeling of continuous hydration considering spatial condensed water in fine micro-pore structures was proposed. Further, coupling of the integrated analysis with the extensive model was conducted, providing good agreement with time-dependent deformation experiments at different temperatures. Eventually, the validity and practical benefit of this study were demonstrated.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Multi-Scale Modeling of Structural Concrete;Maekawa,2009

2. Modeling of Concrete Performance;Maekawa,1999

3. Nonlinear Mechanics of Reinforced Concrete;Maekawa,2003

4. Multi-scale Modeling of Concrete Performance

5. Solidification Theory for Concrete Creep. I: Formulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3