Abstract
Black liquor, a valuable by-product of the pulp production process, is used for the recovery of chemicals and serves as an energy source for the pulp mill. Before entering the recovery unit, black liquor runs through several stages of evaporation, wherein the solids content (SC) can be used to control the evaporation effectiveness. In the current study, the time-domain nuclear magnetic resonance (TD-NMR) technique was applied to determine the SC of black liquor. The TD-NMR system was modified for flowing samples, so that the black liquor could be pumped through the system, followed by the measurement of the spin-spin relaxation rate, R2. A temperature correction was also applied to reduce deviations in the R2 caused by the sample temperature. The SC was calculated based on a linear model between the R2 and the SC values determined gravimetrically, where good agreement was shown. The online TD-NMR system was tested at a pulp mill for the SC estimation of weak black liquor over seven days without any fouling, which demonstrated the feasibility of the method in a harsh industrial environment. Therefore, the potential of the TD-NMR technology as a technique for controlling the black liquor evaporation process was demonstrated.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献