Generation of Scale-Free Assortative Networks via Newman Rewiring for Simulation of Diffusion Phenomena

Author:

Di Lucchio Laura1,Modanese Giovanni1ORCID

Affiliation:

1. Faculty of Engineering, Free University of Bozen-Bolzano, I-39100 Bolzano, Italy

Abstract

By collecting and expanding several numerical recipes developed in previous work, we implement an object-oriented Python code, based on the networkX library, for the realization of the configuration model and Newman rewiring. The software can be applied to any kind of network and “target” correlations, but it is tested with focus on scale-free networks and assortative correlations. In order to generate the degree sequence we use the method of “random hubs”, which gives networks with minimal fluctuations. For the assortative rewiring we use the simple Vazquez-Weigt matrix as a test in the case of random networks; since it does not appear to be effective in the case of scale-free networks, we subsequently turn to another recipe which generates matrices with decreasing off-diagonal elements. The rewiring procedure is also important at the theoretical level, in order to test which types of statistically acceptable correlations can actually be realized in concrete networks. From the point of view of applications, its main use is in the construction of correlated networks for the solution of dynamical or diffusion processes through an analysis of the evolution of single nodes, i.e., beyond the Heterogeneous Mean Field approximation. As an example, we report on an application to the Bass diffusion model, with calculations of the time tmax of the diffusion peak. The same networks can additionally be exported in environments for agent-based simulations like NetLogo.

Funder

Free University of Bozen-Bolzano

Publisher

MDPI AG

Reference26 articles.

1. The configuration model for Barabasi-Albert networks;Bertotti;Appl. Netw. Sci.,2019

2. Chult, D.S., Hagberg, A., and Swart, P. (2008). Exploring Network Structure, Dynamics, and Function Using NetworkX, Report LA-UR-08-05495.

3. Platt, E.L. (2019). Network Science with Python and NetworkX Quick Start Guide: Explore and Visualize Network Data Effectively, Packt Publishing Ltd.

4. Assortativity in complex networks;Noldus;J. Complex Netw.,2015

5. Mixing patterns in networks;Newman;Phys. Rev. E,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The bass diffusion model: agent-based implementation on arbitrary networks;Mathematical and Computer Modelling of Dynamical Systems;2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3