Bayesian Mapping Reveals Large-Effect Pleiotropic QTLs for Wood Density and Slenderness Index in 17-Year-Old Trees of Eucalyptus cladocalyx

Author:

Valenzuela Camilo,Ballesta Paulina,Maldonado Carlos,Baettig Ricardo,Arriagada Osvin,Sousa Mafra GabrielleORCID,Mora Freddy

Abstract

Eucalyptus cladocalyx F. Muell is a tree species suitable for low-rainfall sites, even with annual average precipitation as low as 150 mm per year. Its wood is classified as highly durable and its permanence in soil is longer than 25 years, so it can be used for multiple applications. Given that about 41% of the world’s land area is classified as drylands, added to the impact of climate change on the availability of water resources, it becomes necessary to use plant species that can tolerate environments with low water availability. In this study, a Bayesian analysis of genetic parameters showed that wood density (WD) was moderately heritable, with a posterior mean of h2 = 0.29 and a Bayesian credibility region (90%) of 0.06–0.74, while the slenderness coefficient (SC) was highly heritable, with a posterior mean of h2 = 0.48 and a Bayesian credibility region (90%) of 0.11–0.87. Through Bayesian regression analysis, we identified four and three significant associations for WD and SC, respectively. Another important finding of the bi-trait Bayesian analysis was the detection of three large-effect pleiotropic QTLs located on LG4 at 52 cM, on LG2 at 125 cM, and on LG6 at 81 cM. Bayesian bi-trait regression and the posterior probability of association indicated that three QTLs presented strong evidence of association with WD and SC. This provides convincing evidence that the loci qtlWD130/qtlSC130, qtlWD195/qtlSC195, and qtlWD196/qtlSC196 have a significant pleiotropic effect. The association mapping based on multivariate Bayesian regression was useful for the identification of genomic regions with pleiotropic effects. These loci can be used in molecular marker-assisted breeding to select trees with better wood density.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3