GLPS: A Geohash-Based Location Privacy Protection Scheme

Author:

Liu Bin12ORCID,Zhang Chunyong1,Yao Liangwei1,Xin Yang1

Affiliation:

1. National Engineering Research Center for Disaster Backup and Recovery, Information Security Center, School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. College of Information and Network Engineering, Anhui Science and Technology University, Bengbu 233030, China

Abstract

With the development of mobile applications, location-based services (LBSs) have been incorporated into people’s daily lives and created huge commercial revenues. However, when using these services, people also face the risk of personal privacy breaches due to the release of location and query content. Many existing location privacy protection schemes with centralized architectures assume that anonymous servers are secure and trustworthy. This assumption is difficult to guarantee in real applications. To solve the problem of relying on the security and trustworthiness of anonymous servers, we propose a Geohash-based location privacy protection scheme for snapshot queries. It is named GLPS. On the user side, GLPS uses Geohash encoding technology to convert the user’s location coordinates into a string code representing a rectangular geographic area. GLPS uses the code as the privacy location to send check-ins and queries to the anonymous server and to avoid the anonymous server gaining the user’s exact location. On the anonymous server side, the scheme takes advantage of Geohash codes’ geospatial gridding capabilities and GL-Tree’s effective location retrieval performance to generate a k-anonymous query set based on user-defined minimum and maximum hidden cells, making it harder for adversaries to pinpoint the user’s location. We experimentally tested the performance of GLPS and compared it with three schemes: Casper, GCasper, and DLS. The experimental results and analyses demonstrate that GLPS has a good performance and privacy protection capability, which resolves the reliance on the security and trustworthiness of anonymous servers. It also resists attacks involving background knowledge, regional centers, homogenization, distribution density, and identity association.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Anhui Provincial Department of Education’s 2021 University Scientific Research Key Project

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3