Abstract
Probability distributions are omnipresent in data analysis. They are often used to model the natural uncertainty present in real phenomena or to describe the properties of a data set. Designing efficient visual metaphors to convey probability distributions is, however, a difficult problem. This fact is especially true for geographical data, where conveying the spatial context constrains the design space. While many different alternatives have been proposed to solve this problem, they focus on representing data variability. However, they are not designed to support spatial analytical tasks involving probability quantification. The present work aims to adapt recent non-spatial approaches to the geographical context, in order to support probability quantification tasks. We also present a user study that compares the efficiency of these approaches in terms of both accuracy and usability.
Subject
Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献