Textile Bandwidth-Enhanced Half-Mode Substrate-Integrated Cavity Antenna Based on Embroidered Shorting Vias

Author:

Liu Feng-Xue12ORCID,Meng Fan-Yu1,Chen Yu-Jia3,Gao Zhou-Hao3,Cui Jie4,Zhang Le12

Affiliation:

1. School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China

2. Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology, Xuzhou 221400, China

3. JSNU SPBPU Institute of Engineering, Jiangsu Normal University, Xuzhou 221116, China

4. School of Transportation Engineering, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China

Abstract

A textile bandwidth-enhanced half-mode substrate-integrated cavity (HMSIC) antenna based on embroidered shorting vias is designed. Based on the simulated results of the basic HMSIC antenna, two embroidered hollow posts with square cross-sections are added as shorting vias at the intersections of the zero-E traces of the TM210HM and TM020HM modes to shift the TM010HM-mode band to merge with the bands of the higher-order modes for bandwidth enhancement. A prototype is practically fabricated based on computerized embroidery techniques. Measurement results show that the prototype is of an expanded −10 dB impedance band of 4.87~6.17 GHz (23.5% fractional bandwidth), which fully covers the 5 GHz wireless local area network (WLAN) band. The simulated radiation efficiency and maximum gain of the proposed antenna are above 97% and 7.6 dBi, respectively. Furthermore, simulations and measurements prove its robust frequency response characteristic in the proximity of the human tissues or in bending conditions, and the simulations of the specific absorption rate (SAR) prove its electromagnetic safety on the human body.

Funder

Xuzhou Science and Technology Project

Jiangsu College and University Natural Science Research Project

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3