Proton-Irradiation Effects and Reliability on GaN-Based MIS-HEMTs

Author:

Zhen Zixin1ORCID,Feng Chun2,Xiao Hongling2,Jiang Lijuan2ORCID,Li Wei2

Affiliation:

1. China Aerospace Science & Industry Corp Defense Technology R&T Center, Beijing 1000854, China

2. Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

Abstract

A comprehensive study of proton irradiation reliability on a bilayer dielectrics SiNx/Al2O3 MIS-HEMT, the common Schottky gate HEMT, and a single dielectric layer MIS-HEMT with SiNx and with Al2O3 for comparison is conducted in this paper. Combining the higher displacement threshold energy of Al2O3 with the better surface passivation of the SiNx layer, the bilayer dielectrics MIS-HEMT presents much smaller degradation of structural materials and of device electrical performance after proton irradiation. Firstly, the least of the defects caused by irradiation suggesting the smallest structural material degradation is observed in the bilayer dielectrics MIS-HEMT through simulations. Then, DC and RF electrical performance of four kinds of devices before and after proton irradiation are studied through simulation and experiments. The smallest threshold voltage degradation rate, the smallest maximum on-current degradation and Gm degradation, the largest cut-off frequency, and the lowest cut-off frequency degradation are found in the bilayer dielectrics MIS-HEMT among four kinds of devices. The degradation results of both structural materials and electrical performance reveal that the bilayer dielectrics MIS-HEMT performs best after irradiation and had better radiation resilience.

Funder

CAS Project for Young Scientists in Basic Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3