The Microstructure and Properties of Ni60/60% WC Wear-Resistant Coatings Prepared by Laser-Directed Energy Deposition

Author:

Yang Husen1,Li Wen1,Liu Yichun1ORCID,Li Fengxian1,Yi Jianhong1,Eckert Jürgen2ORCID

Affiliation:

1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben, Austria

Abstract

Ni60/60% WC composite coatings with a good surface roughness and high mechanical properties were successfully prepared on 316L stainless steel substrate by laser-directed energy deposition (LDED) technology. The effects of laser power on the microstructural evolution and mechanical properties of the Ni60/60% WC composite coating were investigated. The relationships between the chemical composition, the microstructure, the hardness, and the friction wear resistance of the composite coatings were characterized and investigated. The results show that the laser power had a significant effect on the energy input, which determined the melting extent of the Ni60 phases around the WC particles and the bonding strength between the reinforcements and the matrix, as well as the bonding strength between the substrate and the coatings. With an increase in the laser power from 800 W to 1400 W, the average hardness of the coating surface increased due to the increased densification of the deposited coatings and then decreased due to grain coarsening under a high energy input. The average coefficient of friction of the coatings decreased gradually to 0.383 at 1000 W, showing a minimum wear of 0.00013 mm2 at 1200 W. The main wear mechanisms on the coated surfaces were adhesive wear and abrasive wear. Moreover, the coatings deposited at 1200 W exhibited better forming quality and wear resistance. This work suggests that the processing parameters during LDED can be optimized to prepare Ni60/60% WC wear-resistant coatings with excellent mechanical properties.

Funder

Science Foundation of the Yunnan Provincial Science and Technology Department

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3