Design and Verification of a New Universal Active Filter Based on the Current Feedback Operational Amplifier and Commercial AD844 Integrated Circuit

Author:

Chen Hua-Pin1ORCID,Wey I-Chyn2,Chen Liang-Yen2,Wu Cheng-Yueh1,Wang San-Fu3

Affiliation:

1. Department of Electronic Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan

2. Department of Electrical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan

3. Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan

Abstract

This paper presents a triple-input and four-output type voltage-mode universal active filter based on three current-feedback operational amplifiers (CFOAs). The filter employs three CFOAs, two grounded capacitors, and six resistors. The filter structure has three high-input and three low-output impedances that simultaneously provide band-reject, high-pass, low-pass, and band-pass filtering functions with single-input and four-output type and also implements an all-pass filtering function by connecting three input signals to one input without the use of voltage inverters or switches. The same circuit configuration enables two unique filtering functions: low-pass notch and high-pass notch. Three CFOAs with three high-input and low-output impedance terminals enable cascading without voltage buffers. The circuit is implemented using three commercial off-the-shelf AD844 integrated circuits, two grounded capacitors, and six resistors and further implemented as a CFOA-based chip using three CFOAs, two grounded capacitors, and six resistors. The CFOA-based chip has lower power consumption and higher integration than the AD844-based filter. The circuit was simulated using OrCAD PSpice to verify the AD844-based filter and Synopsys HSpice for post-layout simulation of the CFOA-based chip. The theoretical analysis is validated and confirmed by measurements on an AD844-based filter and a CFOA-based chip.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3