Student Cheating Detection in Higher Education by Implementing Machine Learning and LSTM Techniques

Author:

Alsabhan Waleed1ORCID

Affiliation:

1. College of Engineering, Al Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia

Abstract

Both paper-based and computerized exams have a high level of cheating. It is, therefore, desirable to be able to detect cheating accurately. Keeping the academic integrity of student evaluations intact is one of the biggest issues in online education. There is a substantial possibility of academic dishonesty during final exams since teachers are not directly monitoring students. We suggest a novel method in this study for identifying possible exam-cheating incidents using Machine Learning (ML) approaches. The 7WiseUp behavior dataset compiles data from surveys, sensor data, and institutional records to improve student well-being and academic performance. It offers information on academic achievement, student attendance, and behavior in general. In order to build models for predicting academic accomplishment, identifying at-risk students, and detecting problematic behavior, the dataset is designed for use in research on student behavior and performance. Our model approach surpassed all prior three-reference efforts with an accuracy of 90% and used a long short-term memory (LSTM) technique with a dropout layer, dense layers, and an optimizer called Adam. Implementing a more intricate and optimized architecture and hyperparameters is credited with increased accuracy. In addition, the increased accuracy could have been caused by how we cleaned and prepared our data. More investigation and analysis are required to determine the precise elements that led to our model’s superior performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Academic integrity in the information age: insights from health sciences students at a South African University;Journal of Applied Research in Higher Education;2024-05-30

2. Technology-Integrated Assessment: A Literature Review;The Open/Technology in Education, Society, and Scholarship Association Journal;2024-05-01

3. Applied Artificial Intelligence in Healthcare: A Review of Computer Vision Technology Application in Hospital Settings;Journal of Imaging;2024-03-28

4. A Literature Review of AI-Powered Systems for Monitoring Suspicious and Anomalous Activities;International Journal of Advanced Research in Science, Communication and Technology;2024-02-07

5. Challenging cheating in higher education: a review of research and practice;Assessment & Evaluation in Higher Education;2024-01-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3