Modified Linear Scaling and Quantile Mapping Mean Bias Correction of MODIS Land Surface Temperature for Surface Air Temperature Estimation for the Lowland Areas of Peninsular Malaysia

Author:

Bahari Nurul Iman Saiful,Muharam Farrah MelissaORCID,Zulkafli ZedORCID,Mazlan Norida,Husin Nor Azura

Abstract

MODIS land surface temperature data (MODIS Ts) products are quantified from the earth surface’s reflected thermal infrared signal via sensors onboard the Terra and Aqua satellites. MODIS Ts products are a great value to many environmental applications but often subject to discrepancies when compared to the air temperature (Ta) data that represent the temperature measured at 2 m above the ground surface. Although they are different in their nature, the relationship between Ts and Ta has been established by many researchers. Further validation and correction on the relationship between these two has enabled the estimation of Ta from MODIS Ts products in order to overcome the limitation of Ta that can only provide data in a point form with a very limited area coverage. Therefore, this study was conducted with the objective to assess the accuracy of MODIS Ts products, i.e., MOD11A1, MOD11A2, MYD11A1, and MYD11A2 against Ta and to identify the performance of a modified Linear Scaling using a constant and monthly correction factor (LS-MBC), and Quantile Mapping Mean Bias Correction (QM-MBC) methods for lowland area of Peninsular Malaysia. Furthermore, the correction factor (CF) values for each MBC were adjusted according to the condition set depending on the different bias levels. Then, the performance of the pre- and post-MBC correction for by stations and regions analysis were evaluated through root mean square error (RMSE), percentage bias (PBIAS), mean absolute error (MAE), and correlation coefficient (r). The region dataset is obtained by stacking the air temperature (Ta_r) and surface temperature (Ts_r) data corresponding to the number of stations within the identified regions. The assessment of pre-MBC data for both 36 stations and 5 regions demonstrated poor correspondence with high average errors and percentage biases, i.e., RMSE = 3.33–5.42 °C, PBIAS = 1.36–12.07%, MAE = 2.88–4.89 °C, and r = 0.16–0.29. The application of the MBCs has successfully reduced the errors and bias percentages, and slightly increased the r values for all MODIS Ts products. All post-MBC depicted good average accuracies (RMSE and MAE < 3 °C and PBIAS between ±5%) and r between 0.18 and 0.31. In detail, for the station analysis, the LS-MBC using monthly CF recorded better performance than the LS-MBC using constant CF or the QM-MBC. For the regional study, the QM-MBC outperformed the others. This study illustrated that the proposed LS-MBC, in spite of its simplicity, managed to perform well in reducing the error and bias terms of MODIS Ts as much as the performance of the more complex QM-MBC method.

Funder

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3