Finding the Optimal Multimodel Averaging Method for Global Hydrological Simulations

Author:

Qi Wenyan,Chen Jie,Xu ChongyuORCID,Wan Yongjing

Abstract

Global gridded precipitations have been extensively considered as the input of hydrological models for runoff simulations around the world. However, the limitations of hydrologic models and the inaccuracies of the precipitation datasets could result in large uncertainty in hydrological forecasts and water resource estimations. Therefore, it is of great importance to investigate the hydrological value of a weighted combination of hydrological models driven by different precipitation datasets. In addition, due to the diversities of combination members and climate conditions, hydrological simulation for watersheds under different climate conditions may show various sensitivities to the weighted combinations. This study undertakes a comprehensive analysis of various multimodel averaging methods and schemes (i.e., the combination of the members in averaging) to identify the most skillful and reliable multimodel averaging application. To achieve this, four hydrological models driven by six precipitation datasets were used as averaging members. The behaviors of 9 averaging methods and 11 averaging schemes in hydrological simulations were tested over 2277 watersheds distributed in different climate regions in the world. The results show the following: (1) The multi-input averaging schemes (i.e., members consist of one model driven by multiple precipitation datasets) generally perform better than the multimodel averaging schemes (i.e., members consist of multiple models driven by the same precipitation dataset) for each averaging method; (2) The use of multiple members can improve the averaging performances. Six averaging members are found to be necessary and advisable, since using more than six members only imrpoves the estimation results slightly, as compared with using all 24 members; (3) The advantage of using averaging methods for hydrological modeling is region dependent. The averaging methods, in general, produced the best results in the warm temperate region, followed by the snow and equatorial regions, while a large difference among various averaging methods is found in arid and arctic regions. This is mainly due to the different averaging methods being affected to a different extent by the poorly performed members in the arid and arctic regions; (4) the multimodel superensemble method (MMSE) is recommended for its robust and outstanding performance among various climatic regions.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Hubei Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3