Author:
Zhang Yangcen,Liu Xiangnan,Liu Meiling,Zou Xinyu,Zhang Qian,Peng Tao
Abstract
High-frequency disturbance forest ecosystems undergo complex and frequent changes at various spatiotemporal scales owing to natural and anthropogenic factors. Effectively capturing the characteristics of these spatiotemporal changes from satellite image time series is a powerful and practical means for determining their causes and predicting their trends. Herein, we combined the spatiotemporal cube and vegetation indices to develop the improved spatiotemporal cube (IST-cube) model. We used this to acquire the spatiotemporal dynamics of forest ecosystems from 1987 to 2020 in the study area and then classified it into four spatiotemporal scales. The results showed that the cube-core only exists in the increasing IST-cubes, which are distributed in residential areas and forests. The length of the IST-cube implies the duration of triggers. Human activities result in long-term small-scope IST-cubes, and the impact in the vicinity of residential areas is increasing while there is no change within. Meteorological disasters cause short-term, large scope, and irregular impacts. Land use type change causes short-term small scope IST-cubes and a regular impact. Overall, we report the robustness and strength of the IST-cube model in capturing spatiotemporal changes in forest ecosystems, providing a novel method to examine complex changes in forest ecosystems via remote sensing.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献