Abstract
Structure-from-Motion (SfM) photogrammetry is increasingly employed in geomorphological applications for change detection, but repeatability and reproducibility of this methodology are still insufficiently documented. This work aims to evaluate the influence of different survey acquisition and processing conditions, including the camera used for image collection, the number of Ground Control Points (GCPs) employed during Bundle Adjustment, GCP coordinate precision and Unmanned Aerial Vehicle flight mode. The investigation was carried out over three fluvial study areas characterized by distinct morphology, performing multiple flights consecutively and assessing possible differences among the resulting 3D models. We evaluated both residuals on check points and discrepancies between dense point clouds. Analyzing these metrics, we noticed high repeatability (Root Mean Square of signed cloud-to-cloud distances less than 2.1 cm) for surveys carried out under the same conditions. By varying the camera used, instead, contrasting results were obtained that appear to depend on the study site characteristics. In particular, lower reproducibility was highlighted for the surveys involving an area characterized by flat topography and homogeneous texturing. Moreover, this study confirms the importance of the number of GCPs entering in the processing workflow, with different impact depending on the camera used for the survey.
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献