Hyperspectral Remote Sensing Images Deep Feature Extraction Based on Mixed Feature and Convolutional Neural Networks

Author:

Liu Jing,Yang Zhe,Liu Yi,Mu Caihong

Abstract

To achieve effective deep fusion features for improving the classification accuracy of hyperspectral remote sensing images (HRSIs), a pixel frequency spectrum feature is presented and introduced to convolutional neural networks (CNNs). Firstly, the fast Fourier transform is performed on each spectral pixel to obtain the amplitude spectrum, i.e., the pixel frequency spectrum feature. Then, the obtained pixel frequency spectrum is combined with the spectral pixel to form a mixed feature, i.e., spectral and frequency spectrum mixed feature (SFMF). Several multi-branch CNNs fed with pixel frequency spectrum, SFMF, spectral pixel, and spatial features are designed for extracting deep fusion features. A pre-learning strategy, i.e., basic single branch CNNs are used to pre-learn the weights of a multi-branch CNN, is also presented for improving the network convergence speed and avoiding the network from getting into a locally optimal solution to a certain extent. And after reducing the dimensionality of SFMF by principal component analysis (PCA), a 3-dimensionality (3-D) CNN is also designed to further extract the joint spatial-SFMF feature. The experimental results of three real HRSIs show that adding the presented frequency spectrum feature into CNNs can achieve better recognition results, which in turn proves that the presented multi-branch CNNs can obtain the deep fusion features with more discriminant information.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3