Application of M5 Model Tree in Passive Remote Sensing of Thin Ice Cloud Microphysical Properties in Terahertz Region

Author:

Dong Pingyi,Liu LeiORCID,Li Shulei,Hu Shuai,Bu LingbingORCID

Abstract

This article presents a new method for retrieving the Ice Water Path (IWP), the median volume equivalent sphere diameter (Dme) of thin ice clouds (IWP < 100 g/m2, Dme < 80 μm) in the Terahertz band. The upwelling brightness temperature depressions caused by the ice clouds at 325.15, 448.0, 664.0 and 874.0 GHz channels are simulated by the Atmospheric Radiative Transfer Simulator (ARTS). The simulated forward radiative transfer models are taken as historical data for the M5 model tree algorithm to construct a set of piecewise functions which represent the relation of simulated brightness temperature depressions and IWP. The inversion results are optimized by an empirical relation of the IWP and the Dme for thin ice clouds which is summarized by previous studies. We inverse IWP and Dme with the simulated brightness temperature and analyze the inversion performance of selected channels. The 874.4 ± 6.0 GHz channel provides the most accurate results, because of the strong brightness temperature response to the change of IWP in the forward radiative transfer model. In order to improve the thin ice clouds IWP and Dme retrieval accuracy at the middle-high frequency channels in Terahertz band, a dual-channel inversion method was proposed that combines the 448.0± 3.0 GHz and 664.0 ± 4.2 GHz channel. The error analysis shows that the results of the 874.4 ± 6.0 GHz channel and the dual-channel inversion are reliable, and the IWP inversion results meet the error requirement range proposed by previous studies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3