An Adaptive Decomposition Approach with Dipole Aggregation Model for Polarimetric SAR Data

Author:

Wang ZezhongORCID,Zeng QimingORCID,Jiao Jian

Abstract

Polarimetric synthetic aperture radar (PolSAR) has attracted lots of attention from remote sensing scientists because of its various advantages, e.g., all-weather, all-time, penetrating capability, and multi-polarimetry. The three-component scattering model proposed by Freeman and Durden (FDD) has bridged the data and observed target with physical scattering model, whose simplicity and practicality have advanced remote sensing applications. However, the three-component scattering model also has some disadvantages, such as negative powers and a scattering model unfitted to observed target, which can be improved by adaptive methods. In this paper, we propose a novel adaptive decomposition approach in which we established a dipole aggregation model to fit every pixel in PolSAR image to an independent volume scattering mechanism, resulting in a reduction of negative powers and an improved adaptive capability of decomposition models. Compared with existing adaptive methods, the proposed approach is fast because it does not utilize any time-consuming algorithm of iterative optimization, is simple because it does not complicate the original three-component scattering model, and is clear for each model being fitted to explicit physical meaning, i.e., the determined adaptive parameter responds to the scattering mechanism of observed target. The simulation results indicated that this novel approach reduced the possibility of the occurrence of negative powers. The experiments on ALOS-2 and RADARSAT-2 PolSAR images showed that the increasing of adaptive parameter reflected more effective scatterers aggregating at the 45° direction corresponding to high cross-polarized property, which always appeared in the 45° oriented buildings. Moreover, the random volume scattering model used in the FDD could be expressed by the novel dipole aggregation model with an adaptive parameter equal to one that always appeared in the forest area.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3