Integrated Laser Scanner Techniques to Produce High-Resolution DTM of Vegetated Territory

Author:

Marotta FedericaORCID,Teruggi SimoneORCID,Achille Cristiana,Vassena Giorgio Paolo Maria,Fassi FrancescoORCID

Abstract

The paper presents the first part of a research project concerning the creation of 3D terrain models useful to understand landslide movements. Thus, it illustrates the creation process of a multi-source high-resolution Digital Terrain Model (DTM) in very dense vegetated areas obtained by integrating 3D data coming from three sources, starting from long and medium-range Terrestrial Laser Scanner up to a Backpack Indoor Mobile Mapping System. The point clouds are georeferenced by means of RKT GNSS points and automatically filtered using a Cloth Simulation Filter algorithm to separate points belonging to the ground. Those points are interpolated to produce the DTMs which are then mosaicked to obtain a unique multi-resolution DTM that plays a crucial role in the detection and identification of specific geological features otherwise visible. Standard deviation of residuals of the DTM varies from 0.105 m to 0.176 m for Z coordinate, from 0.065 m to 0.300 m for X and from 0.034 m to 0.175 m for Y. The area under investigation belongs to the Municipality of Piuro (SO) and includes both the town and surrounding valley. It was affected by a dramatic landslide in 1618 that destroyed the entire village. Numerous challenges have been faced, caused both by the characteristics of the area and the processed data. The complexity of the case study turns out to be an excellent test bench for the employed technologies, providing the opportunity to precisely identify the needed direction to obtain future promising results.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3