Self-Attention in Reconstruction Bias U-Net for Semantic Segmentation of Building Rooftops in Optical Remote Sensing Images

Author:

Chen ZiyiORCID,Li DilongORCID,Fan Wentao,Guan Haiyan,Wang ChengORCID,Li JonathanORCID

Abstract

Deep learning models have brought great breakthroughs in building extraction from high-resolution optical remote-sensing images. Among recent research, the self-attention module has called up a storm in many fields, including building extraction. However, most current deep learning models loading with the self-attention module still lose sight of the reconstruction bias’s effectiveness. Through tipping the balance between the abilities of encoding and decoding, i.e., making the decoding network be much more complex than the encoding network, the semantic segmentation ability will be reinforced. To remedy the research weakness in combing self-attention and reconstruction-bias modules for building extraction, this paper presents a U-Net architecture that combines self-attention and reconstruction-bias modules. In the encoding part, a self-attention module is added to learn the attention weights of the inputs. Through the self-attention module, the network will pay more attention to positions where there may be salient regions. In the decoding part, multiple large convolutional up-sampling operations are used for increasing the reconstruction ability. We test our model on two open available datasets: the WHU and Massachusetts Building datasets. We achieve IoU scores of 89.39% and 73.49% for the WHU and Massachusetts Building datasets, respectively. Compared with several recently famous semantic segmentation methods and representative building extraction methods, our method’s results are satisfactory.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Project of Science and Technology Plan of Fujian Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3