Remote Sensing Image Scene Classification via Label Augmentation and Intra-Class Constraint

Author:

Xie Hao,Chen Yushi,Ghamisi PedramORCID

Abstract

In recent years, many convolutional neural network (CNN)-based methods have been proposed to address the scene classification tasks of remote sensing images. Since the number of training samples in RS datasets is generally small, data augmentation is often used to expand the training set. It is, however, not appropriate when original data augmentation methods keep the label and change the content of the image at the same time. In this study, label augmentation (LA) is presented to fully utilize the training set by assigning a joint label to each generated image, which considers the label and data augmentation at the same time. Moreover, the output of images obtained by different data augmentation is aggregated in the test process. However, the augmented samples increase the intra-class diversity of the training set, which is a challenge to complete the following classification process. To address the above issue and further improve classification accuracy, Kullback–Leibler divergence (KL) is used to constrain the output distribution of two training samples with the same scene category to generate a consistent output distribution. Extensive experiments were conducted on widely-used UCM, AID and NWPU datasets. The proposed method can surpass the other state-of-the-art methods in terms of classification accuracy. For example, on the challenging NWPU dataset, competitive overall accuracy (i.e., 91.05%) is obtained with a 10% training ratio.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Remote Sensing Image Classification using Horse Herd Optimization with Deep Transfer Learning Model;2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS);2024-04-17

2. A Novel Network-Level Fusion Architecture of Proposed Self-Attention and Vision Transformer Models for Land Use and Land Cover Classification From Remote Sensing Images;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. CE-RX: A Collaborative Cloud-Edge Anomaly Detection Approach for Hyperspectral Images;Remote Sensing;2023-08-29

4. Target feature matching method of remote sensing image of power tower supported by grid coding;International Conference on Automation Control, Algorithm, and Intelligent Bionics (ACAIB 2023);2023-08-10

5. Improving remote sensing scene classification using quality-based data augmentation;International Journal of Remote Sensing;2023-03-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3