Optimizing Robotic Mobile Fulfillment Systems for Order Picking Based on Deep Reinforcement Learning

Author:

Zhu Zhenyi1,Wang Sai23ORCID,Wang Tuantuan3

Affiliation:

1. School of Science, Wuhan University of Technology, Wuhan 430070, China

2. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China

3. School of Ecology, Hainan University, Haikou 570228, China

Abstract

Robotic Mobile Fulfillment Systems (RMFSs) face challenges in handling large-scale orders and navigating complex environments, frequently encountering a series of intricate decision-making problems, such as order allocation, shelf selection, and robot scheduling. To address these challenges, this paper integrates Deep Reinforcement Learning (DRL) technology into an RMFS, to meet the needs of efficient order processing and system stability. This study focuses on three key stages of RMFSs: order allocation and sorting, shelf selection, and coordinated robot scheduling. For each stage, mathematical models are established and the corresponding solutions are proposed. Unlike traditional methods, DRL technology is introduced to solve these problems, utilizing a Genetic Algorithm and Ant Colony Optimization to handle decision making related to large-scale orders. Through simulation experiments, performance indicators—such as shelf access frequency and the total processing time of the RMFS—are evaluated. The experimental results demonstrate that, compared to traditional methods, our algorithms excel in handling large-scale orders, showcasing exceptional superiority, capable of completing approximately 110 tasks within an hour. Future research should focus on integrated decision-making modeling for each stage of RMFSs and designing efficient heuristic algorithms for large-scale problems, to further enhance system performance and efficiency.

Funder

National Key Research & Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3