Hydrogen Production Methods Based on Solar and Wind Energy: A Review

Author:

Benghanem MohamedORCID,Mellit AdelORCID,Almohamadi Hamad,Haddad Sofiane,Chettibi Nedjwa,Alanazi Abdulaziz M.,Dasalla Drigos,Alzahrani Ahmed

Abstract

Several research works have investigated the direct supply of renewable electricity to electrolysis, particularly from photovoltaic (PV) and wind generator (WG) systems. Hydrogen (H2) production based on solar energy is considered to be the newest solution for sustainable energy. Different technologies based on solar energy which allow hydrogen production are presented to study their benefits and inconveniences. The technology of water decomposition based on renewable energy sources, to produce hydrogen, can be achieved by different processes (photochemical systems; photocatalysis systems, photo-electrolysis systems, bio-photolysis systems, thermolysis systems, thermochemical cycles, steam electrolysis, hybrid processes, and concentrated solar energy systems). A comparison of the different methods for hydrogen production based on PV and WG systems was given in this study. A comparative study of different types of electrolyzers was also presented and discussed. Finally, an economic assessment of green hydrogen production is given. The hydrogen production cost depends on several factors, such as renewable energy sources, electrolysis type, weather conditions, installation cost, and the productivity of hydrogen per day. PV/H2 and wind/H2 systems are both suitable in remote and arid areas. Minimum maintenance is required, and a power cycle is not needed to produce electricity. The concentrated CSP/H2 system needs a power cycle. The hydrogen production cost is higher if using wind/H2 rather than PV/H2. The green energy sources are useful for multiple applications, such as hydrogen production, cooling systems, heating, and water desalination.

Funder

the Deputyship of Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3