Abstract
This paper presents a method for determining the load capacity of three-phase squirrel-cage induction motors supplied with a balanced distorted voltage containing rotating harmonics (1st, 5th, 7th, 11th, 13th,...). The method is based on the dependence of the motor load capacity on the load power losses in the rotor cage. The load capacity was determined based on motor short-circuit measurements made for frequencies equal to harmonic frequencies. To evaluate the load capacity, a factor with the proposed name Harmonic Losses Factor (HLF) was introduced. Its expression is a generalization of the well-known HVF expression. However, it has been shown that a more accurate estimation of the load capacity is obtained using the sum of load power losses in the rotor cage from higher harmonics. Measurements and calculations were carried out for a low-voltage squirrel-cage motor with a rated power of 22 kW and a synchronous speed of 1500 rpm. Calculations showed that the derating power curves given in the IEC 60034-17 and NEMA MG1 standards are incorrect for the tested motor.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献