Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System

Author:

Hassan QusayORCID,Abdulrahman Imad Saeed,Salman Hayder M.,Olapade Olushola TomilayoORCID,Jaszczur MarekORCID

Abstract

Green hydrogen production is essential to meeting the conference of the parties’ (COP) decarbonization goals; however, this method of producing hydrogen is not as cost-effective as hydrogen production from fossil fuels. This study analyses an off-grid photovoltaic energy system designed to feed a proton-exchange membrane water electrolyzer for hydrogen production to evaluate the optimal electrolyzer size. The system has been analyzed in Baghdad, the capital of Iraq, using experimental meteorological data. The 12 kWp photovoltaic array is positioned at the optimal annual tilt angle for the selected site. The temperature effect on photovoltaic modules is taken into consideration. Several electrolyzers with capacities in the range of 2–14 kW were investigated to assess the efficiency and effectiveness of the system. The simulation process was conducted using MATLAB and considering the project life span from 2021 to 2035. The results indicate that various potentially cost-competitive alternatives exist for systems with market combinations resembling renewable hydrogen wholesale. It has been found that the annual energy generated by the analyzed photovoltaic system is 18,892 kWh at 4313 operating hours, and the obtained hydrogen production cost ranges from USD 5.39/kg to USD 3.23/kg. The optimal electrolyzer capacity matches a 12 kWp PV system equal to 8 kW, producing 37.5 kg/year/kWp of hydrogen for USD 3.23/kg.

Funder

Polish Ministry of Science

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. Development of Oshawa hydrogen hub in Canada: A case study;Aydin;Int. J. Hydrogen Energy,2021

2. A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area;Razmjoo;Renew. Energy,2021

3. Renewable energy resources and workforce case study Saudi Arabia: Review and recommendations;Barhoumi;J. Therm. Anal. Calorim.,2020

4. Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification;Hassan;Renew. Energy,2021

5. Gielen, D., Gorini, R., Leme, R., Prakash, G., Wagner, N., Janeiro, L., Collins, S., Kadir, M., Asmelash, E., and Ferroukhi, R. (2021). World Energy Transitions Outlook: 1.5 °C Pathway, International Renewable Energy Agency. Available online: https://www.irena.org/publications/2021/Jun/World-Energy-Transitions-Outlook.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3