Impact of Hot Arid Climate on Optimal Placement of Electric Vehicle Charging Stations

Author:

El Hafdaoui Hamza,El Alaoui Hamza,Mahidat Salma,El Harmouzi Zakaria,Khallaayoun Ahmed

Abstract

Electric vehicles (EVs) are becoming more commonplace as they cut down on both fossil fuel use and pollution caused by the transportation sector. However, there are a number of major issues that have arisen as a result of the rapid expansion of electric vehicles, including an inadequate number of charging stations, uneven distribution, and excessive cost. The purpose of this study is to enable EV drivers to find charging stations within optimal distances while also taking into account economic, practical, geographical, and atmospheric considerations. This paper uses the Fez-Meknes region in Morocco as a case study to investigate potential solutions to the issues raised above. The scorching, arid climate of the region could be a deterrent to the widespread use of electric vehicles there. This article first attempts to construct a model of an EV battery on MATLAB/Simulink in order to create battery autonomy of the most widely used EV car in Morocco, taking into account weather, driving style, infrastructure, and traffic. Secondly, collected data from the region and simulation results were then employed to visualize the impact of ambient temperature on EV charging station location planning, and a genetic algorithm-based model for optimizing the placement of charging stations was developed in this research. With this method, EV charging station locations were initially generated under the influence of gas station locations, population and parking areas, and traffic, and eventually through mutation, the generated initial placements were optimized within the bounds of optimal cost, road width, power availability, and autonomy range and influence. The results are displayed to readers in a node-link network to help visually represent the impact of ambient temperatures on EV charging station location optimization and then are displayed in interactive GIS maps. Finally, conclusions and research prospects were provided.

Funder

German Academic Exchange Service

Federal Ministry for Economic Cooperation and Development (BMZ), Germany

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference36 articles.

1. Effectiveness of electric vehicle incentives in the United States;Jenn;Energy Policy,2018

2. Kassakian, J.G. (2013). Overcoming Barriers to Electric-Vehicle Deployment: Interim Report, Transportation Research Board, National Research Council.

3. Morrow, K., Karner, D., and Francfort, J. (2008). Plug-in Hybrid Electric Vehicle Charging Infrastructure Review.

4. Mock, P., Schmid, S.A., and Friedrich, H.E. (2010). Electric and Hybrid Vehicles: Power Sources, Models, Sustainability, Infrastructure and the Market, Elsevier.

5. What drivers range preferences in electric vehicle users;Franke;Transp. Policy,2013

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3