FFESSD: An Accurate and Efficient Single-Shot Detector for Target Detection

Author:

Shi Wenxu,Bao Shengli,Tan Dailun

Abstract

The Single Shot MultiBox Detector (SSD) is one of the fastest algorithms in the current target detection field. It has achieved good results in target detection but there are problems such as poor extraction of features in shallow layers and loss of features in deep layers. In this paper, we propose an accurate and efficient target detection method, named Single Shot Object Detection with Feature Enhancement and Fusion (FFESSD), which is to enhance and exploit the shallow and deep features in the feature pyramid structure of the SSD algorithm. To achieve it we introduced the Feature Fusion Module and two Feature Enhancement Modules, and integrated them into the conventional structure of the SSD. Experimental results on the PASCAL VOC 2007 dataset demonstrated that FFESSD achieved 79.1% mean average precision (mAP) at the speed of 54.3 frame per second (FPS) with the input size 300 × 300, while FFESSD with a 512 × 512 sized input achieved 81.8% mAP at 30.2 FPS. The proposed network shows state-of-the-art mAP, which is better than the conventional SSD, Deconvolutional Single Shot Detector (DSSD), Feature-Fusion SSD (FSSD), and other advanced detectors. On extended experiment, the performance of FFESSD in fuzzy target detection was better than the conventional SSD.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3