AE-CGAN Model based High Performance Network Intrusion Detection System

Author:

Lee JooHwaORCID,Park KeeHyun

Abstract

In this paper, a high-performance network intrusion detection system based on deep learning is proposed for situations in which there are significant imbalances between normal and abnormal traffic. Based on the unsupervised learning models autoencoder (AE) and the generative adversarial networks (GAN) model during deep learning, the study aim is to solve the imbalance of data and intrusion detection of high performance. The AE-CGAN (autoencoder-conditional GAN) model is proposed to improve the performance of intrusion detection. This model oversamples rare classes based on the GAN model in order to solve the performance degradation caused by data imbalance after processing the characteristics of the data to a lower level using the autoencoder model. To measure the performance of the AE-CGAN model, data is classified using random forest (RF), a typical machine learning classification algorithm. In this experiment, we used the canadian institute for cybersecurity intrusion detection system (CICIDS)2017 dataset, the latest public dataset of network intrusion detection system (NIDS), and compared the three models to confirm efficacy of the proposed model. We compared the performance of three types of models. These included single-RF, a classification model using only a classification algorithm, AE-RF which is processed by classifying data features, and the AE-CGAN model which is classified after solving the data feature processing and data imbalance. Experimental results showed that the performance of the AE-CGAN model proposed in this paper was the highest. In particular, when the data were unbalanced, the performances of recall and F1 score, which are more accurate performance indicators, were 93.29% and 95.38%, respectively. The AE-CGAN model showed much better performance.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3