Mass Transfer of Microscale Light-Emitting Diodes to Unusual Substrates by Spontaneously Formed Vertical Tethers During Chemical Lift-Off

Author:

Kim Ja-Yeon,Cho Yoo-Hyun,Park Hyun-Sun,Ryou Jae-Hyun,Kwon Min-KiORCID

Abstract

A much simplified method for transferring Gallium nitride (GaN) light emitting didoes (LEDs) to an unusual substrate, such as glass, Si, polyethylene terephthalate, or polyurethane, was demonstrated with spontaneously formed vertical tethers during chemical lift-off (CLO), without requiring a sacrificial layer or extra process steps. The LED arrays resided on a stamp that was coated with an adhesive layer. After the layer with the LEDs was transferred to the new substrates, the stamp was removed by acetone to complete the preparation. Over 3 × 3 cm2 LED arrays transferred to various substrates without any damage and misorientation. We also found that the optical and electrical characteristics improved after transfer due to decease in built-in stress. This simple and practical method is expected to greatly facilitate the development of transferrable full color GaN microLEDs on various substrates with either greatly reduced or no damage.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3