NaHS-Hydrogel and Encapsulated Adipose-Derived Stem Cell Evaluation on an Ex Vivo Second-Degree Burn Model

Author:

Capin Lucille,Gross-Amat OliviaORCID,Calteau Marie,Rovere Marie-Rose,Salmon Damien,Auxenfans CélineORCID

Abstract

Second-degree burns result in the loss of the epidermal barrier and could lead to delayed complications during the healing process. Currently, therapeutic options to treat severe burns are limited. Thus, this work aims to evaluate the effect of NaHS, a hydrogen sulfide (H2S) donor, in poloxamer hydrogel in topical application and the potentiating effect of injected encapsulated adipose-derived stem cells (ASCs) compared to monolayer ASCs using our previous second-degree burn model on human skin explants. Indeed, our model allows testing treatments in conditions similar to a clinical application. The observed benefits of NaHS may include an antioxidant role, which might be beneficial in the case of burns. Concerning ASCs, their interest in wound healing is more than well documented. In order to evaluate the efficiency of our treatments, we analyzed the kinetics of wound closure, keratinocyte proliferation, and dermal remodeling. The effect of NaHS led to a delay in re-epithelialization, with a decrease in the number of proliferating cells and a decrease in the synthesis of procollagen III. On the contrary, intradermal injection of ASCs, encapsulated or not, improves wound healing by accelerating re-epithelialization and collagen I synthesis; however, only encapsulated ASCs accelerate keratinocyte migration and increase the rate of procollagen III and collagen III. In conclusion, NaHS treatment did not improve burn healing. However, the injection of ASCs stimulated wound healing, which is encouraging for their therapeutical use in burn treatment.

Funder

AFRETH

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3