Optical Turbulence Profile in Marine Environment with Artificial Neural Network Model

Author:

Bi Cuicui,Qing ChunORCID,Wu Pengfei,Jin Xiaomei,Liu Qing,Qian Xianmei,Zhu Wenyue,Weng Ningquan

Abstract

Optical turbulence strongly affects different types of optoelectronic and adaptive optics systems. Systematic direct measurements of optical turbulence profiles [Cn2(h)] are lacking for many climates and seasons, particularly in marine environments, because it is impractical and expensive to deploy instrumentation. Here, a backpropagation neural network optimized using a genetic algorithm (GA-BP) is developed to estimate atmospheric turbulence profiles in marine environments which is validated against corresponding [Cn2(h)] profile datasets from a field campaign of balloon-borne microthermal measurements at the Haikou marine environment site. Overall, the trend and magnitude of the GA-BP model and measurements agree. The [Cn2(h)] profiles from the GA-BP model are generally superior to those obtained by BP and the physically-based (HMNSP99) models. Several statistical operators were used to quantify the GA-BP model performance on reconstructing the optical turbulence profiles in marine environments. The characterization of vertical distributions of optical turbulence profiles and the main integral parameters derived from [Cn2(h)] profiles are presented. The median Fried parameter, isoplanatic angle, and coherence time are 9.94 cm, 0.69″, and 2.85 ms, respectively, providing independent optical turbulence parameters for adaptive optics systems. The proposed approach exhibits potential for implementation in ground-based optical applications in marine environments.

Funder

Foundation of Advanced Laser Technology Laboratory of Anhui Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3