Abstract
For inverse synthetic aperture radar (ISAR) imaging of rapidly spinning targets, the large migration through range cells (MTRC) results in weak coherence between adjacent echoes, which makes the conventional envelope alignment method unable to be applied. By analyzing the correlation between the echoes, a translational motion compensation (TMC) method for rapidly spinning targets is proposed. Firstly, the rotation period of the target is estimated by the incoherent accumulation method for the echo signal after range compression. Secondly, Kalman filtering is performed on the shift values required to maximize the correlation coefficient of the echoes with one rotation period difference in azimuth time to obtain the relative translational motion of the radar and the target. Finally, a translational compensation function is constructed according to the results of Kalman filtering to compensate the phase items caused by translational motion. Furthermore, the covariance matrix of observation noise required by Kalman filtering is also provided. This method is used to achieve high-precision envelope alignment, and the effectiveness of the proposed method is validated by simulations.
Funder
the National Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献