Analysis of Environmental and Atmospheric Influences in the Use of SAR and Optical Imagery from Sentinel-1, Landsat-8, and Sentinel-2 in the Operational Monitoring of Reservoir Water Level

Author:

Souza Wendson de OliveiraORCID,Reis Luis Gustavo de MouraORCID,Ruiz-Armenteros Antonio MiguelORCID,Veleda DorisORCID,Ribeiro Neto AlfredoORCID,Fragoso Jr. Carlos RubertoORCID,Cabral Jaime Joaquim da Silva Pereira,Montenegro Suzana Maria Gico Lima

Abstract

In this work, we aim to evaluate the feasibility and operational limitations of using Sentinel-1 synthetic aperture radar (SAR) data to monitor water levels in the Poço da Cruz reservoir from September 2016–September 2020, in the semi-arid region of northeast Brazil. To segment water/non-water features, SAR backscattering thresholding was carried out via the graphical interpretation of backscatter coefficient histograms. In addition, surrounding environmental effects on SAR polarization thresholds were investigated by applying wavelet analysis, and the Landsat-8 and Sentinel-2 normalized difference water index (NDWI) and modified normalized difference water index (MNDWI) were used to compare and discuss the SAR results. The assessment of the observed and estimated water levels showed that (i) SAR accuracy was equivalent to that of NDWI/Landsat-8; (ii) optical image accuracy outperformed SAR image accuracy in inlet branches, where the complexity of water features is higher; and (iii) VV polarization outperformed VH polarization. The results confirm that SAR images can be suitable for operational reservoir monitoring, offering a similar accuracy to that of multispectral indices. SAR threshold variations were strongly correlated to the normalized difference vegetation index (NDVI), the soil moisture variations in the reservoir depletion zone, and the prior precipitation quantities, which can be used as a proxy to predict cross-polarization (VH) and co-polarization (VV) thresholds. Our findings may improve the accuracy of the algorithms designed to automate the extraction of water levels using SAR data, either in isolation or combined with multispectral images.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3