Abstract
The carrier-to-noise ratio (C/N0) is an important indicator of the signal quality of global navigation satellite system receivers. In a vector receiver, estimating C/N0 using a signal amplitude Kalman filter is a typical method. However, the classical Kalman filter (CKF) has a significant estimation delay if the signal power levels change suddenly. In a weak signal environment, it is difficult to estimate the measurement noise for CKF correctly. This article proposes the use of the adaptive strong tracking Kalman filter (ASTKF) to estimate C/N0. The estimator was evaluated via simulation experiments and a static field test. The results demonstrate that the ASTKF C/N0 estimator can track abrupt variations in C/N0 and the method can estimate the weak signal C/N0 correctly. When C/N0 jumps, the ASTKF estimation method shows a significant advantage over the adaptive Kalman filter (AKF) method in terms of the time delay. Compared with the popular C/N0 algorithms, the narrow-to-wideband power ratio (NWPR) method, and the variance summing method (VSM), the ASTKF C/N0 estimator can adopt a shorter averaging time, which reduces the hysteresis of the estimation results.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献