Chemical Composition as the Indicator of Thermally Treated Pine (Pinus sylvestris L.) Wood Colour

Author:

Kučerová Viera1ORCID,Hrčka Richard2ORCID,Hýrošová Tatiana3

Affiliation:

1. Department of Chemistry and Chemical Technology, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia

2. Department of Wood Science, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia

3. Department of Mathematics and Descriptive Geometry, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 01 Zvolen, Slovakia

Abstract

This study aimed to determine the influence of increased temperature on the mass loss, chemical composition, and colour of pine wood because of the lack of such information. The colour was measured on samples of wood, extracted sawdust, holocellulose, and lignin isolated from the extracted sawdust of pine heartwood and sapwood. A wood sample labelled 20 °C was considered as wood with the original composition. Subsequently, we verified the measured values with the proposed mixing colour model. Pine heartwood and sapwood samples were thermally treated at temperatures of 100, 150, 200, 220, 240, and 260 °C for 1, 3, and 5 h. It was found that sapwood degraded faster than heartwood. The thermal treatment of wood increases lignin content and decreases holocellulose content, especially at 260 °C. The maximum extractive content of 3.60% was at 1 h and a temperature of 260 °C for both parts of the wood. Lightness values decreased with increasing temperature and time of treatment. The coordinate a* of heartwood showed a positive slope until one hour of treatment duration and a temperature of 240 °C. Then, it decreased for the subsequent duration of treatment. The same course was shown for the coordinate b* of sapwood at a temperature of 200 °C. The proposed model of mixing colours proved that changes in both parts of a wood-extracted substance, holocellulose, and lignin content, were responsible for the changing colour of extracted wood.

Funder

Scientific Grant Agency

Slovak Research and Development Agency

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3