Abstract
This paper deals with the energy recovery resulting from the braking transient of trains arriving in a railway station, to feed a railway micro-grid that would be purposely connected to the railway traction circuit to feed the electrical infrastructure required for charging a fleet of electrical vehicles that are parked nearby the station and offered for providing train plus electric vehicle integrated mobility. Based on results of an experimental campaign intended to recording the mechanical quantities related to the braking transient of regional trains arriving in a medium-size station of the Italian railways network, this paper describes a suitable quasi-stationary model that allows the evaluation of the amount of energy that is recoverable over each single day of operation, as well as the micro-grid dynamic electric behaviour due to the sudden energy recovery transient in the railway catenary. The proposed railway micro-grid is discussed, particularly concerning the configuration of the dual-active-bridge converter for regulating the power flow from the railway catenary to the micro-grid during an energy recovery transient, as well as by considering the DC-DC converter that is used in the micro-grid, together with battery storage to provide voltage stability according to the micro-grid operating condition.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献