Author:
Lovyagin Yuri N.,Lovyagin Nikita Y.
Abstract
This paper lies in the framework of axiomatic non-standard analysis based on the non-standard arithmetic axiomatic theory. This arithmetic includes actual infinite numbers. Unlike the non-standard model of arithmetic, this approach does not take models into account but uses an axiomatic research method. In the axiomatic theory of non-standard arithmetic, hyperrational numbers are defined as triplets of hypernatural numbers. Since the theory of hyperrational numbers and axiomatic non-standard analysis is mainly published in Russian, in this article we give a brief review of its basic concepts and required results. Elementary hyperrational analysis includes defining and evaluating such notions as continuity, differentiability and integral calculus. We prove that a bounded monotonic sequence is a Cauchy sequence. Also, we solve the task of line segment measurement using hyperrational numbers. In fact, this allows us to approximate real numbers using hyperrational numbers, and shows a way to model real numbers and real functions using hyperrational numbers and functions.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献