Abstract
In this paper, for a given direction b ∈ C n \ { 0 } we investigate slice entire functions of several complex variables, i.e., we consider functions which are entire on a complex line { z 0 + t b : t ∈ C } for any z 0 ∈ C n . Unlike to quaternionic analysis, we fix the direction b . The usage of the term slice entire function is wider than in quaternionic analysis. It does not imply joint holomorphy. For example, it allows consideration of functions which are holomorphic in variable z 1 and continuous in variable z 2 . For this class of functions there is introduced a concept of boundedness of L-index in the direction b where L : C n → R + is a positive continuous function. We present necessary and sufficient conditions of boundedness of L-index in the direction. In this paper, there are considered local behavior of directional derivatives and maximum modulus on a circle for functions from this class. Also, we show that every slice holomorphic and joint continuous function has bounded L-index in direction in any bounded domain and for any continuous function L : C n → R + .
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献