Optimal Genetic Design of Type-1 and Interval Type-2 Fuzzy Systems for Blood Pressure Level Classification

Author:

Guzmán Juan,Miramontes Ivette,Melin PatriciaORCID,Prado-Arechiga German

Abstract

The use of artificial intelligence techniques such as fuzzy logic, neural networks and evolutionary computation is currently very important in medicine to be able to provide an effective and timely diagnosis. The use of fuzzy logic allows to design fuzzy classifiers, which have fuzzy rules and membership functions, which are designed based on the experience of an expert. In this particular case a fuzzy classifier of Mamdani type was built, with 21 rules, with two inputs and one output and the objective of this classifier is to perform blood pressure level classification based on knowledge of an expert which is represented in the fuzzy rules. Subsequently different architectures were made in type-1 and type-2 fuzzy systems for classification, where the parameters of the membership functions used in the design of each architecture were adjusted, which can be triangular, trapezoidal and Gaussian, as well as how the fuzzy rules are optimized based on the ranges established by an expert. The main contribution of this work is the design of the optimized interval type-2 fuzzy system with triangular membership functions. The final type-2 system has a better classification rate of 99.408% than the type-1 classifier developed previously in “Design of an optimized fuzzy classifier for the diagnosis of blood pressure with a new computational method for expert rule optimization” with 98%. In addition, we also obtained a better classification rate than the other architectures proposed in this work.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Survey on Genetic Fuzzy Systems;Archives of Computational Methods in Engineering;2024-06-27

2. A 3D Membership Function-Based Type-2 Fuzzy Brain Emotional Learning Predictor for Forecasting Taiwan Stock Price;International Journal of Fuzzy Systems;2024-01-22

3. The development of fuzzy logic in the field of health;AIP Conference Proceedings;2024

4. An Ensemble-based Neural Network Model for Natural Disaster in 2019;2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA);2023-12-04

5. Discovering effect of intuitionistic fuzzy transformation in multi-layer perceptron for heart disease prediction: a study;Computer Methods in Biomechanics and Biomedical Engineering;2023-11-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3