PSO with Dynamic Adaptation of Parameters for Optimization in Neural Networks with Interval Type-2 Fuzzy Numbers Weights

Author:

Gaxiola Fernando,Melin Patricia,Valdez FevrierORCID,Castro Juan,Manzo-Martínez Alain

Abstract

A dynamic adjustment of parameters for the particle swarm optimization (PSO) utilizing an interval type-2 fuzzy inference system is proposed in this work. A fuzzy neural network with interval type-2 fuzzy number weights using S-norm and T-norm is optimized with the proposed method. A dynamic adjustment of the PSO allows the algorithm to behave better in the search for optimal results because the dynamic adjustment provides good synchrony between the exploration and exploitation of the algorithm. Results of experiments and a comparison between traditional neural networks and the fuzzy neural networks with interval type-2 fuzzy numbers weights using T-norms and S-norms are given to prove the performance of the proposed approach. For testing the performance of the proposed approach, some cases of time series prediction are applied, including the stock exchanges of Germany, Mexican, Dow-Jones, London, Nasdaq, Shanghai, and Taiwan.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3