Interpreting Self-Potential Signal during Reactive Transport: Application to Calcite Dissolution and Precipitation

Author:

Rembert FloreORCID,Jougnot DamienORCID,Luquot LindaORCID,Guérin RogerORCID

Abstract

Geochemistry and reactive transport play a critical role in many fields. In particular, calcite dissolution and precipitation are chemical processes occurring ubiquitously in the Earth’s subsurface. Therefore, understanding and quantifying them are necessary for various applications (e.g., water resources, reservoirs, geo-engineering). These fundamental geochemical processes can be monitored using the self-potential (SP) method, which is sensitive to pore space changes, water mineralization, and mineral–solution interactions. However, there is a lack of physics-based models linking geochemical processes to the SP response. Thus, in this study, we develop the first geochemical–geophysical fully coupled multi-species numerical workflow to predict the SP electrochemical response. This workflow is based on reactive transport simulation and the computation of a new expression for the electro-diffusive coupling for multiple ionic species. We apply this workflow to calcite dissolution and precipitation experiments, performed for this study and focused on SP monitoring alternating with sample electrical conductivity (EC) measurements. We carried out this experimental part on a column packed with calcite grains, equipped for multichannel SP and EC monitoring and subjected to alternating dissolution or precipitation conditions. From this combined experimental investigation and numerical analysis, the SP method shows clear responses related to ionic concentration gradients, well reproduced with electro-diffusive simulation, and no measurable electrokinetic coupling. This novel coupled approach allows us to determine and predict the location of the reactive zone. The workflow developed for this study opens new perspectives for SP applications to characterize biogeochemical processes in reactive porous media.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3