A Novel Semianalytical Model for the Relationship between Formation Pressure and Water Saturation in Coalbed Methane Reservoirs

Author:

Yang LongORCID,Zhang Yizhong,Zhang Maolin,Ju Bin

Abstract

The accuracy of the relationship between formation pressure and water saturation has a direct impact on predicting the production performance of coal reservoirs. As a result, researchers are becoming more interested in this connection. The most commonly used method to evaluate this connection is the semianalytic method, but it disregards the impact of coal matrix shrinkage on pore compressibility, resulting in inaccurate water saturation estimations for coal reservoirs. A material balance equation that considers the effect of coal matrix shrinkage on cleat porosity and pore compressibility, as well as the gas–water relative permeability curve, is used for the first time in this study to establish a model between pressure and water saturation. Furthermore, this study extends the proposed pressure–saturation model to predict cumulative gas production and gas recovery, resolving the difficult problem of calculating recovery for coalbed methane reservoirs. To verify its accuracy, this study compares the proposed method with numerical simulations and previous methods; the results of the comparison show that the water saturation under formation pressure calculated by the method proposed in this study is closer to the results of the numerical simulation. Sun’s model ignores the effect of matrix shrinkage on pore compressibility, resulting in larger calculation results. The findings of this study indicate that the effect of coal matrix shrinkage on pore compressibility cannot be ignored, and that the proposed method can replace numerical simulation as a simple and accurate method for water saturation evaluation, which can be applied to predict cumulative gas and recovery estimation for closed coalbed methane reservoirs. The proposed method increases the accuracy of the semianalytical method and broadens its application. It is critical for the prediction of coal reservoir production performance and forecasting of production dynamics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference34 articles.

1. Generation and accumulation characteristics of mixed coalbed methane controlled by tectonic evolution in Liulin CBM field, eastern Ordos Basin, China;Bao;J. Nat. Gas Sci. Eng.,2016

2. Flow behavior of gas confined in nanoporous shale at high pressure: Real gas effect;Wu;Fuel,2017

3. The effect of salt precipitation on the petrophysical properties and the adsorption capacity of shale matrix based on the porous structure reconstruction;Zhang;Fuel,2022

4. Prospects for development of a techno-logical structure of underground coal mines;Kazanin;MIAB. Min. Inf. Anal. Bull,2022

5. Justification of technologies parameters for intensive mining of prone to spontane-ous combustion thick coal seams;Sidorenko;MIAB Min. Inf. Anal. Bull,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3