D-Distance Technique to Determine Failure Probability of Power Circuit Breaker

Author:

Kumpalavalee Suphon,Suwanasri Thanapong,Suwanasri Cattareeya,Phadungthin Rattanakorn

Abstract

In this paper, a new D-distance factor is proposed to determine the failure probability and to prioritize maintenance actions of power circuit breakers in high-voltage substations. The D-distance factor is calculated by using the condition index and renovation index of a high-voltage circuit breaker (HVCB). To facilitate effective decision-making on maintenance with a simple method and less computational effort, the proposed model incorporates the weighting–scoring method (WSM) and analytical hierarchy process (AHP) with the various diagnostic methods for condition index assessments as well as the operation requirements of HVCBs for renovation index assessments. Many significant parameters from circuit breaker testing, such as insulation resistance, contact resistance, contact timing, SF6 gas measurements, gas leakage rate, visual inspection, etc., have been considered for condition index determination. In addition to these, other significant parameters, such as age of the circuit breaker, age of the interrupter and mechanism, number of fault current interruptions, actual load current to rated current ratio, actual short circuit current to rated interrupting current ratio, maintenance ability, spare parts availability, maintenance expertise level, etc., are also considered for renovation index determination. To validate the proposed model, the practical test data of twenty 115 kV HVCBs in various substations of a distribution utility in Thailand were utilized and tested. By analyzing the actual condition and operation requirement of the circuit breaker, the output, as the condition index and renovation index using the proposed method, is discussed with HVCB experts in the utility to adjust the scores and weights of all criteria to obtain the most accurate and reliable model. The results show that the D-distance technique measured from the risk matrix, which is defined as the failure probability, can be used to rank the maintenance schedule from urgent to normal maintenance tasks. In addition, various failure probabilities in the risk matrix of the circuit breaker can be used to determine the appropriate maintenance strategies for the power circuit breaker in each group. Finally, the proposed method could help the utility managers and maintenance engineers manage the maintenance planning effectively and easily for thousands of HVCBs in the grid, and it can be further applied with other high-voltage equipment in both transmission and distribution systems to facilitate the maintenance activities according to available costs and human resources.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. Experimental Investigation of Electrical Stresses on the Main Components of HVDC Circuit Breakers;Nadew;IEEE Trans. Power Deliv.,2020

2. A Novel Arcing Power-Based Algorithm for Condition Monitoring of Electrical Wear of Circuit Breaker Contacts;Behnam;IEEE Trans. Power Deliv.,2019

3. Mechanical Condition Identification and Prediction of Spring Operating Mechanism of High Voltage Circuit Breaker;Yakui;IEEE Access,2020

4. A New Vibration Analysis Approach for Detecting Mechanical Anomalies on Power Circuit Breakers;Qiuyu;IEEE Access,2019

5. (2011). (Revision of IEEE Std C37.10-1995)—Guide for Investigation, Analysis, and Reporting of Power Circuit Breaker Failures (Standard No. IEEE Std C37.10-2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3