Study on the Temporal and Spatial Evolution of China’s Carbon Dioxide Emissions and Its Emission Reduction Path

Author:

Shi Wei,Sha Zhiquan,Qiao FuweiORCID,Tang Wenwen,Luo Chuyu,Zheng Yali,Wang Chunli,Ge Jun

Abstract

Based on the total carbon emission data of 30 provinces and cities in China from 2000 to 2020, this paper used non-parametric kernel density estimation and traditional and spatial Markov probability transfer matrix methods to explore the temporal and spatial dynamic evolution characteristics of carbon dioxide emissions in China and then used a super-SBM model to calculate the carbon emission reduction potential of each province. The results showed that: (1) from 2000 to 2020, the total carbon emissions in China showed an upward trend of fluctuation, from 1.35 Gt to 4.90 Gt year by year, with an annual growth rate of 13.10%. (2) The core density curve showed a double peak form of “main peak + right peak,” indicating that a polarization phenomenon occurred in the region. (3) The overall trend of carbon dioxide emissions shifting to superheavy carbon emissions was significant, and the probability of transition was as high as 74.69%, indicating that it was challenging to achieve leapfrog transition in the short term. (4) Based on the principle of fairness and efficiency of provincial carbon emission reduction, mainland China’s 30 provincial administrative regions can be divided into four types. Finally, the carbon emission reduction path is designed for each province.

Funder

Gansu Provincial Natural Science Foundation

Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province

Higher Education Innovation Fund Projects in Gansu Province

Project of Improving Young Teachers’ Scientific Research Ability in Northwest Normal University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3