Study on the Lightning Protection Performance for a 110 kV Non-Shield-Wired Overhead Line with Anti-Thunder and Anti-Icing Composite Insulators

Author:

Hu Jianping,Zhu TingORCID,Hu Jianlin,Fang Zhen,Zhang Ruihe

Abstract

Due to micro landforms and climate, the 110 kV transmission lines crossing the mountain areas are exposed to severe icing conditions for both their high voltage (HV) conductors and shield wires during the winter. Ice accumulation on the shield wire causes excessive sag, which leads to a reduced clearance between earth and HV wires, and could eventually result in tripping of the line due to phase-to-ground flashover. Due to the lack of effective de-icing techniques for the shield wires, removing them completely from the existing overhead line (OHL) structure becomes a reasonable solution to prevent icing accidents. Nevertheless, the risk of exposure to lightning strikes increased significantly after the shield wires were removed. In order to cope with this, the anti-thunder and anti-icing composite insulator (AACI) is installed on the OHLs. In this article, the 110 kV transmission line without shield wire is considered. The shielding failure after installation of the AACIs is studied using the lightning strike simulation models established in the ATP software. The lightning stroke flashover tests are carried out to examine the shielding failures on various designs for the AACIs. Assuming the tower’s earth resistance is 30 Ω, the LWL of back flashover and direct flashover are 630.88 kA and 261.33 kA, respectively, after the installation of AACIs on an unearthed OHL. Due to the unique mechanism of the AACI, the operational voltage level and the height of the pylon have a neglectable influence on its lightning withstand level (LWL). When the length of the parallel protective gap increases from 450 mm to 550 mm, the lightning trip-out rate decreases from 0.104 times/100 km·a to 0.014 times/100 km·a, and the drop rate reaches 86.5%. Therefore, increasing the gap distance for the AACI to provide additional clearance is proven to be an effective method to reduce the shielding failure rates for non-shield-wired OHLs.

Funder

Science and Technology Project of State Grid Corporation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. Review on Disaster of Wire Icing in China;Huo;J. Appl. Meteorol. Sci.,2021

2. Bian, L. (2020). Study on Prediction and Control of Icing Risk in Power Engineering Line Design. [Master Thesis, North China Electric Power University].

3. Study on DC Ice Melting and Ice Shedding Process Under Natural Condition;Jiang;Power Syst. Technol.,2013

4. Study on problem of DC ice-melting of the Hunan 220 kV power grid;Ruan;Power Syst. Prot. Control,2011

5. Development and Application of DC Ice Melting Device;Fu;Autom. Electr. Power Syst.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3